Internet of Things Phone Smart Charger

I pre-ordered one of the Samsung Galaxy Note7 phones. The ones in the news recently for being an explosion hazard.

I love the new phone – pocket computer really, the way I use it. I wasn’t about to give it up over some silly thing like spontaneous combustion.

I had read that Tesla runs their car batteries between 40%-80% for normal use to maximize the lifetime of their very expensive car batteries. I figured that cell phone batteries would benefit from similar treatment. A bit of research generally confirmed this, with http://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries being the most concise write-up. The first half basically demonstrates that you can get the same amount of total power to flow through the battery regardless of how much you charge it – summed over the total life of the power draw in the data tables. The 2nd half is more interesting. It says that high voltage charges and heat shorten the overall lifespan of the battery.

The Note7 is a sealed phone wihtout a replaceable battery. I can’t pull my usual trick of replacing the battery after a year of abusing it.

Heat seams to be the trigger for the phone explosions. So I can make my phone more safe, and make it last longer by managing the top voltage and heat in the battery.

I can do this.

I bought a wireless Qi charger to charge the phone because it charges slower. The fast charger can charge the phone crazy fast, but it gets HOT when it does this. Hot is bad. Thus, slow is good. The wireless charger will also reduce wear on the USB C port. A nice side benefit. No phone explosions while I sleep and burn the house down – this is a good thing.

I bought a Belkin WEMO wifi controlled outlet. It is If-This-Than-That (IFTTT.com) capable so I can control it from my phone. There are other smart plugs available that will work, this is simply the one I could find in a store that I could verify would work with IFTTT.

I configured IFTTT to have 2 different actions. One for turning the WeMo on, the other off. I set these up as Maker Channel triggered recipes. There are other triggers that you can use such as email or SMS, but I am a web developer, so web-based triggers are a natural fit for me.

Image of The Rules set up in IFTTT
The Rules set up in IFTTT
Photo of the IFTTT Off rule
The OFF rule in IFTTT. It uses the Maker Chanel for the trigger, which means a web request will trigger this. It turns off the WeMo controlling the wireless phone charger.

I installed Tasker on the phone and configured it to monitor charge state and battery temperature.

I created 3 tasks, one to turn the charger on, and two to turn it off.

photo of Tasker rules
The rules in Tasker to control the phone charging.

The ON trigger looks for the battery to be below 80% charged, and below 35 degrees Celsius. This will make a request to the IFTTT.com Maker Chanel URL for ON.

One OFF trigger looks at the battery temperature. 35.1 degrees or higher. The other OFF trigger looks for the battery charge to be 90% or higher. These two both make a web request to the IFTTT.com Maker Chanel OFF URL I set up.

So now as the phone battery heats up or gets close to full, the phone tells the charger to turn off. I let the phone have a 10% charge window so I am not toggling the switch and charger on and off all night long.

Tasker with both OFF rules turned on. The phone is both charged to 90% or more as well as running hotter than I would like.
Tasker with both OFF rules turned on. The phone is both charged to 90% or more as well as running hotter than I would like.

I also programed the WeMo to turn itself on a little while before my alarm is set to go off. This is to let the battery be closer to 90% charged rather than 80% charged when I wake up. I haven’t found the right time for this yet. I still need to play with it a bit.

I know there are other ways to make a smart phone charger. This is what I came up with. I will be getting an additional smart plug and building one for at the office so I don’t over-charge my phone when at work. I will try a different brand likely to see if I can come up with a cheaper way.

I built an Altoids tin multi-fuel backpacking stove

I spent an hour or two on Youtube the other night, coming up with ideas for this. So, none of the ideas are original to me, but I didn't see a multi-fuel setup or a capillary action alcohol stove out of a Altoids tin. 

97 grams as it currently sits. It will gain a little bit of weight as I add a small fero rod and jigsaw blade, wind screen and protective wrap. The tin will be the handle for the small saw. I am also going to add a leather wrap around the tin. The wrap is to contain the parts and also be used for a base for keeping tinder dry when making a campfire. The leather thong will be long enough for a bow-drill.

The capillary stove is pretty cool. The fuel wicks up inside the metal wick by capillary action. The metal gets hot, vaporizes the fuel, and it burns. The X shape of the wick is to increase the amount of flame area while providing good air flow to the flame. The X is a slice of a soda can, folded down to the shape.
Currently, I have a problem with boiling of the fuel before it can vaporize, so the stove will spit little fire balls nearly a foot away! It needs work yet.

In album 2015-02-11

Capillary action alcohol stove burning. The fluid wicks up between the thin gap in the soda can wick. The hot metal vaporizes the alcohol, which then burns well. This will burn like this for 5 minutes on 6ml of denatured alcohol and then burn out in a matter of seconds.

All packed up. Everything fits into a regular Altoids tin.

This is in liquid fuel mode. The burner sits inside the tin which has the bolt stand offs to hold the pot. The mesh grate isn’t used in this form.

Wood burning mode. Small sticks can be placed between the pot stand posts. The grate allows air to get under the fire for better burning.

The pot stand is sized to work with metal water bottles.

I tried making a water block for water cooling my MakerGear hot end this weekend…

I tried making a water block for water cooling my MakerGear hot end this weekend.

I failed.
       kinda…

A bit of background as to WHY I would want to do such a project can be found at http://mike.creuzer.com/2013/01/watercooling-my-makergear-prusa-reprap.html I wanted to improve over the coil of copper being that I am about to re-install my 1.75mm hot end for a few lbs of plastic. Going to try ABS for the first time at this size. Not sure if I am going to have problems with that or not.

My fail is I was too lazy to go out into the cold to drill a hole on the drill press. I managed to salvage my stupid hole with a bit of tubing. Hopefully it doesn't cost me too much in efficiency.

I really have no idea what I am doing when it comes to using a lathe. Learning from YouTube is difficult as many of the videos posted are by people with as much experience as me (about 3 hours at this point).

Well, the next iteration should be better, right? I enjoyed making this enough I wouldn't mind making it again. But with a drill press. I think I will drill that hole first so I know it's right.

In album Machining a water block FAIL

Using my UNiMAT lathe to fix my lousy hack saw cut and bring the aluminum block down to the right dimensions.

I turned down the black insulator a bit as I don’t have metric drill bits. The bigger tube is to couple airline tubing together on the OUTSIDE so I don’t get even more restrictions of water flow.

THERE I FIXED IT. I ran a bit of aquarium air hose through the buggered up hole. I am going to lose a lot of heat removal capability, but it lets me temporarily salvage this part. The water going through is in it’s mid 60s, so there is going to be a big difference, so it should pull heat well.

Until I make a new one.

I cut a piece of aluminium in half with a hack saw. The tray did a decent job of collecting the aluminum dust. Terrible surface finish on the cut. I did not do a good job of making the cut straight.

I tried drilling the hole using a hand drill because it’s COLD out in the garage where my drill press is.

I FAILED. I totally didn’t get things where they wanted to go. I’ve a hole on the inside, and a double hole on one end.

I can JUST snap the wooden clip in place with the water block installed. It’s going to be a royal pain to un-clip it.

The water block is small and light. It should work well I hope.

I think I invented something

A laminar flow pipe reducer for a pump housing. At least, a little bit of Google searching hasn't shown me another.

I am trying to find a cheaper way to heat the 75 gallon aquaponics system in the basement. It's really running closer to 125 gallons of water with a LOT of surface area. This bleeds heat quite quickly, so the electric submersion heaters are expensive to run and I simply don't have enough to keep up with the cold basement sucking the heat out of my tanks.

So, I did something stupid. I rigged up a water line to the furnace and water heater flue. This involved running about 25 feet of 1/4 inch tubing because that's all I had on hand that would go the distance. There are issues with copper being toxic to fish, and cooling the flue, causing Carbon Monoxide to fill the house. So this is not something you want to do yourself.

I needed more water flow. A 3/4 inch pond pump forced down to 1/4 hose just doesn't work very well. Too much restriction to get good flow.

I had to make a water tipper to help my grow bed siphon start and stop. This just fills up with water slowly and then dumps the water at once into the bed. The small water pulse surge is often enough to trigger a slow siphon.

This is fine and dandy, but I have a 3d printer. So I spent some time with a Fluid Dynamics textbook and openscad and came up with an adapter for running multiple hoses out of my pump – http://www.thingiverse.com/thing:54029 

I think it's a first. I haven't found anybody else who made a laminar flow reducer for a pond pump. This thing induces laminar water flow through a series of small honeycomb shaped features inside the adapter.

It was very challenging for me to make, as my math skills aren't up to par. I kinda had to trial and error it instead of solving the problem with math.

In the end, it's designed to be printed, with a center support column running up the center to make the upper section easy to print.

The best part is that the goofy thing works!. I get the same water flow out of the heater line as before PLUS I get 2 additional water lines that are providing a significant additional water flow. I'd expect it to work poorly do to all the plastic that's in the water flow, but it seems to be efficient enough to overcome all the extra gunk in the way.

In album

Seriously stupid going on. Aquarium water heater off the furnace flue.

Water tipper mocked up with various bits to induce a water surge to trigger the bell siphon

Honeycomb feature inside the adapter to induce laminar flow.

3 different hoses come out of this one pump adapter.

I broke the first print in half to verify that it printed the way I wanted it to. (It’s my story, let me tell it the way I want to)

The pump running 3 separate hoses.

Watercooling my MakerGear Prusa RepRap

I’ve been fighting with printing 1.75mm PLA. The thicker brass in the hot end causes the heat to creep up more and make the ‘melt zone’ so long and sticky that the printer jams up. The normal ‘fix’ is to have a small fan blow up  into the hot end insulator – the black plastic bit.

This sucks for me. The fans fail – stop spinning, fall apart, etc. The wires pop loose, touch each other, and short out the power mosfet on the RAMPS board. The fan falls down, hits the part, knocks it loose or causes the carriage to skip.

Fan blowing up, cooling the hot end insulator to prevent jamming
Fan blowing up, cooling the hot end insulator to prevent jamming (This is http://www.thingiverse.com/thing:13343 by the way, the best fan holder I’d found)

The irritating part is, the printer will eat 3mm PLA all day long without a problem without the need for this fan.

 

So, I fixed this issue. With one of my aquariums. As I tend to have lots of those about. I like doing funny stuff with my aquariums

I am now water cooling my hot end.

Here’s how…

(Stereoscopic images, look at them cross-eyed if you want to see them in 3d)

Parts for watercooling a makergear reprap hot end
The parts I got for water cooling my RepRap hot end. A bit of soft copper tubing and some hose.

 

water cooling a 3d printer hot end
I cut some tubing with a pipe cutter. I just kinda guessed how long it should be by wrapping my finger around the hot end and cutting the pipe at the length that seemed nice.
deburring the cut copper tube
I deburred the copper tubing with a countersink. The cutter gives me a nice outside edge to slip the tubing over. I wanted a clean inside edge for the water flow.
bending a tube over a screwdriver
I bent the tube over a screwdriver. I was going to fill the tube with sand so it didn’t kink, but I just started bending and it went around without kinking. I was also thinking of sliding some flat metal inside and hammering it down before it bent, but the bend just kinda happened successfully.
bending copper around the hot end
I bent the tube around the hotend. I used the pliers to snug up the bend. It’s not really tight, and I wish I had some heat sink compound to help improve the contact between the two surfaces.
water jacket around the hot end
The ‘wide’ side of the tubing wrap is taking up nearly all the space available along the hot end insulator.
tubing on the water cooled hot end
I measured out a bit of tubing, cut it off, and slid it onto the copper tubing.
water cooled hot end
I think that the water cooled hot end looks pretty good.
temperature monitoring the hot end cooling
I slid a thermistor between the hot end and the water jacket so I can measure the effectiveness of the water cooling.

The task of installing all of this was almost challenging. There was just enough room to be able to slide the hot end up through the carriage, slip on the groove mount, and get it all positioned. The one bolt hole was kinda hiding above the copper tube, but the tube can be spun around a bit so everything can be bolted up snug.

water cooled hot end installed
Here is the water cooled hot end installed onto the X carriage. You are seeing most of it in the reflection of the mirrored print bed.
looking up at the hot end and at the glass clamp
Here we are looking up at the hot end water line routing. Also note the drilled holes in the binder clip. This takes a lot of the strength out of the clip so it’s less likely to break the glass or jump off the print bed and land on the far side of the room.
water pump in aquarium
Here is the water pump in the aquarium. Just straight fish-poo water. It’s not touching the printer, I am not worried about it. More concerned about the toxicity of the copper to the fish than the toxicity of the fish to the printer.
reprap 3d printer next to aquarium
Here is my RepRap 3D printer next to the aquarium that is cooling it. Or is this a photo of my aquarium with the overly expensive electric water heater that happens to print plastic parts? Hard telling…
water and electric wire routing
I ran the water and electric wire routing next to each other. The water and thermistor are not part of the ‘main’ wiring harness as I switch between 3mm and 1.75mm nozzles.
water line routing
Note the pretty hard bend in the plastic hose. If it’s less than this, it hits the mount for the X end stop.
water flow
The water flow through the hot-end is pretty good using the tiny pump I have. I am not seeing a significant difference in temperature from the tank temp to the water from the hot end cooler.

The whole assembly was pretty quick and easy. When I installed the water cooling, I also incorporated the temperature monitoring and soldered the USB cable to the arduino board as the USB-B port got sloppy and would disconnect on me mid-print.

As for some numbers as to how well this works. With no water running through the copper tubing, I am seeing temperatures over 135f after 10 minutes. Yeah, Yeah, I know, RepRaps are metric, but it’s an easy value to convert, go too it. With water running, the top temp I’ve seen is 115f. It likes to run closer to 100-110f. My longest print so far is close to 4 hours without any problems. Without any cooling (and the copper not installed) I’d start to see jamming problems around 1 hour at .1mm layer height. .3mm layer heights would go much longer without problems. I am guessing that the plastic flow volume keeps pushing the heat down the barrel and doesn’t let the transition zone get too long.

I’ve not weighed the copper, tubing and water to see how much extra this weighs over the fan and mounting hardware.

I may run the water around the extruder, X and Y motors to help cool those. Not that they get hot really.

I think I want to mount some SMD LEDs against the tubing for some neat lighting effects. Just so it looks cool.